1. Vision of 5G (IMT-2020 Goals)

5G was designed to create a unified, intelligent, high-performance wireless communication platform that connects people, devices, sensors, vehicles, robots, and infrastructure. It extends mobile broadband, enables mission-critical applications, and scales for massive IoT.

Key Pillars of 5G:

1. Enhanced Mobile Broadband (eMBB)

- · High data rates
- Supports 4K/8K video, AR/VR, cloud gaming
- Wide area coverage + dense urban coverage

2. Ultra-Reliable Low-Latency Communication (URLLC)

- Latency down to 1 ms
- Reliability **99.999**%
- For autonomous vehicles, remote surgery, industrial robots

3. Massive Machine Type Communication (mMTC)

- Connects 1 million devices/km²
- Ideal for IoT: smart cities, agriculture, wearables
- Low power, low complexity

🚀 2. 5G Key Performance Indicators (KPIs)

KPI	Target	Purpose
Latency	≤1 ms	URLLC, robotics, remote surgery
Peak Data Rate	20 Gbps (DL), 10 Gbps (UL)	eMBB, VR/AR
User Data Rate	100 Mbps DL	Consistent experience
Connection Density	1M devices/km ²	IoT, smart cities
Mobility	500 km/h	Trains, high-speed transport
Reliability	99.999%	Safety-critical
Energy Efficiency	10× better than 4G	IoT longevity
Spectrum Efficiency	3× better	More data per Hz

3. 5G Use Case Categories

1. eMBB

- High data rate & capacity
- Suitable for:
 - 4K/8K streaming
 - VR/AR
 - Mobile broadband
 - Stadiums, metros

2. URLLC

- Ultra-low latency: real-time
- Suitable for:
 - Autonomous cars (V2X)
 - Remote surgery
 - Industrial automation
 - Smart grids

3. mMTC

- Massive device connectivity
- Typical applications:
 - Smart meters
 - Environmental sensors
 - Wearables
 - Agricultural IoT

4. Industry 4.0 and Smart Cities (5G **Applications**)

Industry 4.0

- Autonomous robots
- Real-time process control
- Digital twins

- Predictive maintenance
- Uses: URLLC + mMTC

Smart Cities

- Smart traffic management (URLLC)
- Smart lighting (mMTC)
- Smart surveillance (eMBB)
- Pollution monitoring (mMTC)

5. 5G RAN Technologies: Massive MIMOBeamforming

Massive MIMO

- Dozens → hundreds of antennas at gNB
- Improves:
 - · Spectral efficiency
 - Capacity
 - Coverage
- Enables spatial multiplexing

Spatial Multiplexing

- · Multiple data streams simultaneously
- Same time + frequency
- Greatly increases throughput

Beamforming

- Directing signal beams toward users
- Reduces interference
- Increases SNR & range
- Essential for mmWave

Types of Beamforming

Type Features

Analog Low cost, uses phase shifters

Digital High flexibility, multiple beams

Hybrid Balance of both

111 6. mmWave Communication

Frequency

• Above 24 GHz → up to 100 GHz

Advantages

- Very high bandwidth
- Multi-Gbps data rates

Challenges

- Short range
- High path loss
- · No penetration through walls
- Weather-sensitive

Solutions

- Beamforming
- · Small cells
- · Dense deployment

7. Edge Computing for Low Latency

Definition

Processing data near the user (e.g., at gNB), not in the distant cloud.

Benefits

- · Reduces latency
- Supports URLLC
- Offloads core traffic

• Enables real-time analytics

Applications

- AR/VR
- Autonomous vehicles
- Smart factories

🔗 8. SDN and NFV in 5G

Software-Defined Networking (SDN)

- Separates control & data planes
- Centralized control
- · Enables programmable networks

Network Function Virtualization (NFV)

- Replaces hardware network functions with virtual ones
- · Runs on cloud platforms
- Enables rapid deployment & scaling

Joint Impact

- · Supports network slicing
- **Enables automation**
- Reduces cost

3. 9. 5G Security Enhancements

SUPI

- Permanent subscriber identity
- Never transmitted in plain-text

SUCI

- · Encrypted version of SUPI
- Protects against tracking

SEPP

- Secures inter-operator traffic
- Protects signaling (N32 interface)

Unified Authentication

- Supports 5G-AKA, EAP-AKA'
- Prevents identity theft

10. 5G Deployment: SA vs NSA

Non-Standalone (NSA)

- Uses LTE EPC for control plane
- 5G only for data plane
- Fast deployment, cheaper
- Limited advanced features

Standalone (SA)

- Uses full 5G Core
- Supports slicing, URLLC
- · Low latency
- Future-proof

11. NG-RAN Architecture

gNodeB

- Handles radio, MAC, RLC, PDCP
- Supports Massive MIMO & beamforming

Interfaces

Interface	Connects	Purpose
NR-Uu	UE – gNB	Air interface
NG-C	gNB-AMF	Control plane
NG-U	gNB – UPF	User plane
Xn	gNB – gNB	Handover

12. 6G Evolution Concepts

THz Communication

- 0.1 10 THz
- Tbps data rates
- Very high attenuation

AI-Native Networks

- Autonomous network optimization
- Predictive maintenance
- Dynamic slicing

Quantum Communication

- · QKD for secure key sharing
- High security + low interception risk

13. The 5G Core Network (5GC) – Detailed

Notes

5G Core is **service-based**, **virtualized**, and **cloud-native**. It is designed to support **high** throughput, low latency, massive IoT, and network slicing.

Key Principles of 5GC Architecture

1. Service-Based Architecture (SBA)

- Network Functions (NFs) communicate using HTTP/2, REST APIs
- Each NF is a microservice
- Highly modular, scalable, upgradable

2. Control and User Plane Separation (CUPS)

- Control Plane (CP): AMF, SMF, PCF, UDM, AUSF
- User Plane (UP): UPF
- UPF can be placed closer to the edge for ultra-low latency

3. Virtualization (NFV)

NFs run on cloud servers

Decoupled from hardware

4. Programmability (SDN)

- Centralized control
- · Dynamic re-routing and resource allocation

14. 5G Core Network Functions (NFs)

A. AMF (Access & Mobility Management Function)

Handles:

- UE registration
- Mobility management
- NAS signaling
- Authentication (with AUSF)
- Selecting SMF

B. SMF (Session Management Function)

Responsible for:

- · Creating PDU sessions
- Allocating IP addresses
- Configuring UPF routing rules
- Policy enforcement (via PCF)

C. UPF (User Plane Function)

Handles:

- User traffic forwarding
- Packet routing/filtering
- · QoS enforcement
- Traffic anchoring
- · Edge offloading

D. PCF (Policy Control Function)

Functions:

- QoS policies
- · Charging rules
- Session-level decisions

E. UDM (Unified Data Management)

Stores:

- · Subscriber data
- Authentication credentials
- Access policies

F. AUSF (Authentication Server Function)

- · Performs user authentication
- Works with AMF

G. NSSF (Network Slice Selection Function)

Chooses network slice for UE

15. Protocol Stack in 5G

Role

5G NR protocol stack consists of:

User Plane

Laver

Layer	Roic
Application	User applications
IP	IP addressing & routing
PDCP	Ciphering, integrity
RLC	ARQ, segmentation
MAC	Scheduling, HARQ
PHY	Modulation, coding, transmission

Control Plane

Includes NAS + RRC for signaling.

🗱 16. 5G Air Interface (NR) Technology

5G NR introduces flexible air interface using **OFDM**, **scalable numerology**, and **beam-based** transmission.

Scalable Numerology

5G supports subcarrier spacing (SCS):

- 15 kHz (like LTE)
- 30 kHz
- 60 kHz
- 120 kHz (mmWave)
- 240 kHz (extreme high frequencies)

Higher SCS \rightarrow lower symbol duration \rightarrow better for low-latency.

17. Modulation and Coding in 5G

Modulation Schemes

- QPSK
- 16-QAM
- 64-QAM
- 256-QAM (for eMBB)

Coding

- LDPC (Low Density Parity Check) Data
- Polar Codes Control channels

Why LDPC?

- · High efficiency
- Better for high throughput

Why Polar Codes?

- Good for short packets
- Ideal for control signaling

18. 5G Waveform: OFDM & CP-OFDM

Downlink:

• **CP-OFDM** (Cyclic Prefix OFDM)

Uplink:

- SC-FDMA (low PAPR) OR
- **CP-OFDM** (flexibility)

📶 19. 5G NR Frame Structure

Frame length:

• 10 ms

Each frame = 10 subframes

Each subframe = 1 ms

Slots vary depending on numerology (μ):

μ Subcarrier Spacing Slots/Subframe

0	15 kHz	1
1	30 kHz	2
2	60 kHz	4
3	120 kHz	8

Higher μ = lower latency + fast TTI.

🛰 20. NG-RAN Architecture

Components

- gNodeB (gNB)
- Multiple Distributed Units (DU)
- Centralized Units (CU)

Splitting Functions

- CU: RRC, PDCP
- **DU:** MAC, RLC & PHY parts

This creates:

- Lower latency
- Easier upgrades
- Cloud RAN (C-RAN) support

ॐ 21. Key RAN Interfaces

Interface	Connects	Purpose
NR-Uu	UE ↔ gNB	Air interface
NG-C	$gNB \leftrightarrow AMF$	Control plane
NG-U	gNB ↔ UPF	User plane
Xn	gNB ↔ gNB	Handover

12. NSA vs SA Deployment Architecture

Non-Standalone (NSA)

Uses:

- LTE EPC → control plane
- 5G NR → data plane

Pros:

Quick & cheap rollout

Limitations:

- Higher latency
- · No full slicing

Standalone (SA)

Uses:

• 5GC + gNB

Pros:

- True 5G features
- · End-to-end slicing
- Low latency
- URLLC support

23. 5G Coverage Layers (Spectrum Types)

1. Low-band (<1 GHz)

- · Long range
- · Good penetration

• Low speeds (~100 Mbps)

2. Mid-band (1-6 GHz)

- Balanced coverage
- High speeds (1–3 Gbps)
- · Widely used globally

3. mmWave (>24 GHz)

- Extremely high data rates (10+ Gbps)
- Short range
- · Needs beamforming
- · Ideal for hotspots

24. Power Efficiency in 5G

5G introduces:

- · Wake-up radios
- DRX cycles
- Efficient IoT protocols (NB-IoT / LTE-M)
- Energy-aware scheduling

Result:

10× power efficiency improvement.

25. Device-Side Enhancements for 5G

- Multi-band antennas
- Multiple RF chains for MIMO
- Advanced beam tracking
- Low-power wide-area support (LPWA)
- · Optimized modem algorithms

26. 5G Security Architecture

Major Enhancements

- SUPI & SUCI for identity protection
- SEPP for inter-operator security
- Unified authentication framework
- Integrity protection for signaling & user plane

Why more security needed?

- Network slicing
- IoT device scale
- Virtualization → increased attack surface

🚀 27. Network Slicing – In-Depth Notes

Network slicing is one of the most revolutionary features of 5G.

Definition

Network slicing allows a single physical 5G network to be divided into multiple isolated virtual networks, each optimized for a specific service requirement.

Key Characteristics

- End-to-end partitioning of:
 - RAN
 - Transport Network
 - Core Network
- Each slice has unique:
 - QoS
 - Security
 - Latency
 - Reliability
 - Bandwidth

Slice Categories

eMBB Slice

- · High throughput
- · High bandwidth
- Example: Stadium streaming, AR/VR

✓ URLLC Slice

- · Mission-critical
- Sub-millisecond latency
- 99.999% reliability
- Example: Autonomous vehicles, remote surgery

✓ mMTC Slice

- Massive device density
- Low power
- Example: Smart city IoT

Technologies enabling slicing

- **NFV** (Virtualized network functions)
- **SDN** (Programmability & centralized control)
- Cloud-native 5GC
- Automation & orchestration systems

🟅 28. 5G mmWave Detailed Analysis

mmWave is critical for extremely high data rate demands.

Frequency range

- Begins at **24 GHz**
- Extends up to **100 GHz**

Advantages

- · Large bandwidth availability
- Multi-Gbps throughput

• Extremely high spectral efficiency

Propagation Characteristics

✓ Challenges:

- Short range
- · High attenuation
- Poor obstacle penetration
- Sensitive to rain, foliage, humidity

Mitigation:

- Beamforming
- Massive MIMO
- · Ultra-dense small cell deployment

Use Cases

- Stadiums
- Airports
- Indoor hotspots
- Fixed wireless access (FWA)

29. URLLC (Ultra-Reliable Low Latency Communication)

URLLC provides:

• **Latency:** ≤ 1 ms

• **Reliability:** 99.999%

• Deterministic communication

Why URLLC is needed?

- · Industrial automation
- Robotic arms
- · Autonomous vehicles
- Smart grids

Telemedicine / remote surgery

URLLC Requirements

- · Rapid scheduling
- Prioritized resource allocation
- Edge computing support
- Extremely stable radio link

Techniques used

- Mini-slot scheduling
- Packet duplication
- Multi-connectivity (MC)
- Short TTI (Transmission Time Interval)
- QoS flow prioritization

Supports:

• Up to 1 million devices per km²

Design Principles

- · Low complexity devices
- Low power consumption (10-year battery)
- Small data packets
- · Delay tolerant

Applications

- Smart agriculture
- · Water/gas meters
- · Parking sensors
- Wearables
- Environmental monitoring

Enabling Technologies

- NB-IoT
- LTE-M
- Power-saving modes (PSM, eDRX)
- Grant-free uplink access

11. Mobility Management in 5G

Mobility is crucial for continuity during user movement.

Types of Mobility

- **✓** Idle Mode Mobility
 - Tracking Area Update
 - Handled via AMF
- **✓** Connected Mode Mobility
 - Xn-based handover (gNB ↔ gNB)
 - NG-based handover (gNB ↔ AMF ↔ target gNB)

High Mobility Support

- Up to 500 km/h
- Smooth handover even for high-speed trains

Enhancements Over LTE

- Beam-based mobility
- Fast RRC reconfiguration
- Better interference handling

32. Beamforming – Advanced Notes

Beamforming improves coverage, speed, and reliability.

How beamforming works

• Uses antenna arrays

- Adjusts phase & amplitude
- Forms narrow beams toward UE

Benefits

- Higher SNR
- · Reduced interference
- Longer mmWave range

Types

✓ Analog Beamforming

- · RF domain
- · Low complexity
- Single beam

✓ Digital Beamforming

- · Baseband domain
- · Multiple beams
- · High complexity

✓ Hybrid Beamforming

- Combination
- Used in 5G mmWave

10 33. Massive MIMO – Advanced Notes

Massive MIMO enhances:

- · Spectral efficiency
- Capacity
- Reliability

Key Concepts

- Dozens to hundreds of antennas
- · Spatial multiplexing
- Beamforming integration

Benefits

- Serve many users simultaneously
- Higher throughput
- Better interference control

Challenges

- Complexity in RF chains
- · Calibration of many antennas
- Power consumption

🔒 34. 5G Authentication and Security (Deep)

A. SUPI

- Permanent identity (similar to IMSI)
- · Never transmitted plaintext

B. SUCI

- Encrypted via operator public key
- Prevents IMSI/SUPI catchers

C. Unified Authentication

Supports:

- 5G-AKA
- EAP-AKA'

D. SEPP

- Protects inter-operator messages
- Ensures integrity & confidentiality

E. Key Hierarchy in 5G

- K_AUSF
- K_SEAF
- K_AMF

Each protects different layers.

Notes)

Functional Split

- Centralized Unit (CU)
 - RRC
 - PDCP
 - · High-level control
- **✓** Distributed Unit (DU)
 - RLC
 - MAC
 - PHY (partial)
- **✓** Radio Unit (RU)
 - RF processing

Benefits

- Cloud-RAN deployment
- Efficient fronthaul usage
- Better resource allocation

📡 36. Frequency Ranges in 5G

FR1 (Sub-6 GHz)

- <6 GHz
- Good coverage
- Moderate speed
- · Less attenuation

FR2 (mmWave)

- 24-100 GHz
- Multi-Gbps
- Short range
- · Beamforming required

🔄 37. AI/ML in 5G & 6G Evolution

AI/ML is used for:

- Resource allocation
- Traffic prediction
- · Mobility management
- Beam management
- · Energy optimization
- Anomaly detection

6G AI-Native Vision

- Autonomous networks
- Self-optimization
- · Intelligent slicing

38. THz Communication in 6G

Frequency: **0.1 – 10 THz**

Opportunities

- · Tbps data rates
- Ultra-high-resolution sensing
- Holographic communication

Challenges

- Severe atmospheric loss
- · Hardware complexity

39. Edge Computing – Advanced Notes

Key Features

- Reduces latency
- Supports URLLC
- · Local computation
- · Lowers backhaul load

Deployment Locations

- Base station
- Aggregation point
- MEC servers

40. SDN Deep Notes

SDN separates:

- Control plane (central intelligence)
- Data plane (packet forwarding)

Benefits

- · Programmability
- Automation
- Simplified network management

🔄 41. NFV Deep Notes

NFV converts hardware functions into software VNFs.

Benefits

- Lower cost
- · Flexible scaling

- · Quick deployment
- Supports slicing & automation

🏅 42. 5G NR Physical Layer – Deep Notes

The 5G NR PHY (Physical Layer) provides flexible and efficient transmission across a variety of environments.

Key PHY Features

Flexible OFDM Numerology

Subcarrier spacings (SCS):

- 15 kHz (μ=0)
- 30 kHz (µ=1)
- 60 kHz (μ =2)
- 120 kHz (mmWave)
- 240 kHz (extreme high bands)

Bandwidth Parts (BWP)

- UE can operate in selected BW parts
- Reduces power consumption
- Supports IoT + high throughput devices

Beam-based Transmission

5G uses beam sweeping, beam management, and beam refinement.

Slot and Mini-slot Scheduling

- Mini-slots: 2–7 symbols
- Helps URLLC achieve low latency

🧬 43. 5G Channel Coding

5G uses two main error-correcting codes:

✓ LDPC (Low Density Parity Check Codes)

Used for:

• PDSCH (data channels)

- Uplink shared channel Reasons:
- · High throughput
- · Parallelizable decoding

Used for:

- Control channels (PDCCH)Reasons:
- · Good for short block lengths
- Low error probability

44. 5G NR Random Access Procedure (RACH)

Used by UE to:

- Access the network
- · Establish initial connection
- · Perform handover

RACH Steps

- 1. Preamble Transmission
- 2. Random Access Response
- 3. UE Identity Transmission
- 4. Contention resolution

Types

- Contention-based (multiple UEs)
- Contention-free (handover, critical services)

45. QoS in 5G (Quality of Service)

5G provides **QoS Flow-Based Architecture**, replacing LTE's bearer system.

QoS Flow

- Each flow mapped to a **QoS identifier (5QI)**
- Dedicated for URLLC, eMBB, mMTC

Guaranteed Bit Rate (GBR)

Used for:

- URLLC
- VoIP
- Industry 4.0 robots

Non-GBR

Used for:

- Video streaming
- · Web browsing

46. 5G Transport Network

The transport network connects:

- gNB ↔ Core
- CU ↔ DU ↔ RU

Key Components

- Fronthaul
- · Mid-haul
- Backhaul

✓ Fronthaul

- Highest bandwidth requirement
- Latency-critical

✓ Mid-haul

- Between DU ↔ CU
- Lower latency requirement

✓ Backhaul

· Connects RAN to Core

10 47. RRC (Radio Resource Control) in 5G

RRC is crucial for controlling radio resources.

Key Functions

- Connection setup / release
- Mobility management
- Security configuration
- · QoS control
- BWP switching

RRC States

- · RRC Idle
- RRC Inactive
- RRC Connected

New State: RRC Inactive

- Introduced in 5G
- Reduces signaling load
- · Fast resume

PDU = Protocol Data Unit. Equivalent to **bearers** in LTE.

PDU Session Types

- IPv4
- IPv6
- IPv4v6
- Ethernet

Functions

- Provides IP address
- Manages traffic routing
- · QoS flow mapping

Established by:

SMF with UPF assigned for routing.

📡 49. Antenna Technologies in 5G

5G uses advanced antenna systems to improve performance.

Antenna Types

- **✓** Massive MIMO Arrays
 - · Dozens to hundreds of elements
- Phased Array Antennas
 - Enable beamforming
- **3D MIMO**
 - Vertical + horizontal beam steering

칟 50. Interference Management in 5G

Interference significantly impacts performance.

Techniques

- Beamforming
 - Reduces inter-cell interference
 - · Targets beams precisely
- ✓ ICIC (Inter-Cell Interference Coordination)
 - Frequency partitioning

CoMP (Coordinated Multi-Point)

• Multiple base stations serve a user collaboratively

✓ Dynamic Spectrum Sharing (DSS)

Shares spectrum between LTE & 5G

51. Scheduling in 5G

Scheduling determines resource assignment.

Types of Scheduling

✓ URLLC scheduling

- · Mini slots
- High priority

eMBB scheduling

- · Full slots
- Maximizing throughput

mMTC scheduling

• Low-power grant-free uplink

Objective

- Meet QoS requirements
- Efficient resource usage

🔐 52. 5G Privacy Enhancements

SUPI -> **SUCI** Transformation

• Avoids exposure of permanent identity

New Key Hierarchy

- Stronger integrity protection
- NAS & AS message protection

Security Edge Protection Proxy (SEPP)

- Protects N32 inter-operator signaling
- · Provides end-to-end encryption

🟭 53. 5G for Industrial Automation

Factories require:

- Ultra-low latency (URLLC)
- · High reliability
- Precise time synchronization

Applications

- Robot coordination
- **Industrial sensors**
- High-definition video inspection
- Automated Guided Vehicles (AGVs)

Technologies used

- TSN (Time Sensitive Networking)
- Edge computing
- · Network slicing
- Multi-connectivity

54. 5G and Cloud RAN (C-RAN)

C-RAN centralizes baseband processing.

Benefits

- Lower cost
- Efficient resource pooling
- Better coordination (CoMP, MIMO)
- Cloud-native deployment

Drawbacks

• Latency-sensitive fronthaul requirements

📶 55. Device Mobility & Handover Types

Types of Handover

- **✓** Intra-gNB (within same gNB)
 - Faster
 - Uses Xn interface
- ✓ Inter-gNB (between two gNBs)
 - · More complex
 - · Via AMF or Xn
- **V** Inter-RAT (5G ↔ LTE)
 - · Important during NSA rollout

📶 56. 5G NSA Architecture – Deep Notes

NSA uses:

- **eNodeB (LTE)** → Control plane anchor
- gNodeB (5G NR) → User plane

Dual Connectivity Types

- EN-DC (EUTRA-NR DC)
- MR-DC

Benefits:

- Easy deployment
- Reuses EPC

Limitations:

- Higher latency
- No full slicing support

57. UE Capabilities in 5G

UE must support:

- Multiple bandwidth parts
- Beam management
- Massive MIMO reception
- Dual connectivity
- Dynamic spectrum sharing

58. Time Sensitive Networking (TSN) over

5G

Used for:

- Industrial automation
- Deterministic packet timing
- Ultra-low jitter

Features

- Time synchronization
- Guaranteed latency
- · High reliability

59. 5G Core Routing & Traffic Steering

5G Core (5GC) uses advanced routing mechanisms to handle diverse traffic types.

Key Concepts

UPF Anchoring

- UPF acts as the anchor point for PDU Sessions
- Supports break-out to Internet or private DNs

✓ Traffic Steering

- Based on:
 - QoS

- Slice type
- Application requirement

✓ Multiple UPFs

- Core UPF (central data center)
- Edge UPF (low-latency services)
- Local UPF (enterprise private networks)

✓ Benefits

- · Better latency control
- · Improved reliability
- · Optimized routing

📶 60. Multi-Connectivity (MC) in 5G

Multi-connectivity allows UE to connect to **multiple base stations or RATs** simultaneously.

Types

✓ NR-NR Dual Connectivity (NR-DC)

• UE connects to two 5G gNBs

✓ EN-DC (LTE + NR)

- UE connects to LTE eNodeB + 5G gNodeB
- Used in NSA deployment

✓ LTE-WLAN Aggregation (LWA)

• LTE + Wi-Fi combination

Benefits

- · Higher reliability
- Increased throughput
- Lower latency
- · Seamless mobility

61. Deep Dive: Multi-Access Edge Computing (MEC)

MEC is key for URLLC and real-time computation.

Capabilities

- · Runs processing at edge servers
- · Stores frequently used content
- · Executes AI models locally
- · Reduces backhaul congestion

Applications

- · Autonomous cars
- Drones
- · AR/VR gaming
- Smart factories
- · Video analytics

Advantages

- Sub-millisecond latency
- · Reduced jitter
- Localized security
- Bandwidth efficiency

62. 5G Positioning (Location Services)

5G improves positioning accuracy drastically.

Techniques

- SRS (Sounding Reference Signal)
- PRS (Positioning Reference Signal)
- Beam reference signals
- Multi-cell timing measurements

Accuracy

• **Centimeter-level positioning** in indoor & industrial settings

Applications

- Robotics
- Automation
- AR navigation
- Asset tracking

€ 63. 5G V2X (Vehicle-to-Everything)

5G supports advanced intelligent transportation systems.

Types of V2X Communication

- **V2V** (Vehicle-to-Vehicle)
- **V2I** (Vehicle-to-Infrastructure)
- **V2P** (Vehicle-to-Pedestrian)
- **V2N** (Vehicle-to-Network)

Requirements

- Ultra-low latency
- · High reliability
- Edge computation

Applications

- Collision avoidance
- Lane merging
- · Autonomous driving
- Real-time HD map updates

64. AI-Native 6G Networks

6G is envisioned to integrate AI into every network layer.

AI Capabilities

- Self-optimizing networks
- · Predictive mobility & slicing
- Anomaly detection
- Automatic fault management
- Autonomous self-healing

Benefits

- Higher energy efficiency
- Better resource allocation
- · Personalized user experience

65. THz Communication in 6G

THz band: **0.1 – 10 THz**

Advantages

- · Tbps data rates
- Sub-millimeter wavelength
- High-resolution imaging

Challenges

- Severe absorption
- Extremely short range
- Hardware design complexity

Use Cases

- Holographic telepresence
- Ultra-high resolution sensing
- XR (Extended reality)

66. Smart City Services Powered by 5G

Core Applications

✓ Public safety

- Smart surveillance
- Emergency service prioritization

Environmental monitoring

- Air quality sensors
- Waste management

✓ Intelligent transport

- · Traffic signals
- Connected vehicles

Utilities

• Smart water/gas/electric meters

Which 5G features enable this?

- mMTC (IoT sensors)
- URLLC (traffic control)
- eMBB (video surveillance)

🏠 67. 5G Fixed Wireless Access (FWA)

FWA provides broadband-like connectivity using 5G wireless.

Benefits

- · Rapid deployment
- Alternative to fiber
- Cost-effective

Technologies used

- mmWave
- Beamforming

• CPE (Customer Premise Equipment)

Speed

• Up to **1–5 Gbps** depending on frequency

5 68. RAN Sharing Models

Operators can share RAN equipment to save cost.

Types

✓ MORAN (Multi-Operator RAN)

• Share RAN but separate spectrum

✓ MOCN (Multi-Operator Core Network)

- Share spectrum & RAN
- Faster deployment

✓ Site sharing

Only tower/space shared

Benefits

- Reduced CAPEX/OPEX
- Better coverage

📊 69. Deployment Models in 5G

1. Public Networks

Large-scale operator networks

2. Private 5G Networks

- For enterprises
- Ultra-reliable, secure
- Local UPF + edge computing


3. Hybrid Networks

• Combine public & private slices

70. KPIs for 5G Measurements (Practical)

These KPIs evaluate performance in real deployments.

Actual measured user data rate

Round-trip measurement

Reliability indicator

Quality of received signal

Area where minimum service exists

📝 71. End-to-End Workflow in a 5G

Connection

- 1. UE scans NR frequencies
- 2. Beam training & selection
- 3. Random Access (RACH) procedure
- 4. RRC connection establishment
- 5. Authentication & Security (SUPI → SUCI → keys)
- 6. PDU Session establishment (AMF/SMF)
- 7. UPF selection (local or central)
- 8. Data transfer
- 9. Mobility management (handover)

🔮 72. Future Trends Beyond 5G & 6G

1. Integrated Sensing & Communication (ISAC)

Radar + communication in same hardware

2. Visible Light Communication (VLC)

LED-based data transmission

3. Reconfigurable Intelligent Surfaces (RIS)

Control reflection path of radio waves

4. Quantum-safe cryptography

• Protects against quantum attacks

73. Summary of All Key Concepts

- **✓** eMBB → High-speed broadband
- **V** URLLC → Ultra-low latency + reliability
- **✓** mMTC → Massive IoT
- ✓ SBA → Cloud-native core
- **V** CUPS → Flexible CP/UP split
- **V** Beamforming & Massive MIMO → Higher capacity
- **✓** mmWave → Ultra-high data rates
- ✓ Edge/MEC → Real-time processing
- **✓** SUPI/SUCI → Privacy & security
- **V** Network Slicing → Customized virtual networks
- ✓ SA vs NSA → Deployment phases
- ✓ THz & AI-native → 6G vision

Transmission Media: Transmission media refers to the physical path through which data is transmitted from one device to another in a computer network.

It can be broadly divided into two categories:

 Guided Media (Wired Media): signals are transmitted through a physical path (cables/wires). Wired media is also known as bounded media because it has a specific limit. Guided media enables the fast and secure transmission of data over short distances.

Types:

1. Twisted Pair Cable

- i. Two copper wires twisted together.
- b. Types:
 - i. **Unshielded Twisted Pair (UTP)** This is an Unshielded Twisted Pair Cable, which means it does not have any separate shielding or cover. This cable can typically transfer data from 1 Gbps to 10 Gbps over distances up to 100 meters. It is cheaper, used in LANs.
 - ii. **Shielded Twisted Pair (STP)** It includes an additional shield that enhances data security and increases data transfer speed shielded to reduce noise.

Example: Telephone lines, Ethernet cables.

2. Coaxial Cable

- a. Central copper conductor with insulation, metal shielding, and outer cover.
- b. Provides better shielding and higher bandwidth than twisted pair.
- c. Used in TV networks, broadband internet.

Categories of Coaxial Cable

Coaxial cables are categorized by their Radio Government(RG) ratings.

Category	Impedance	Use
RG-59	75 Ω	Cable TV
RG-58	50 Ω	Thin Ethernet
RG-11	50 Ω	Thick Ethernet

d. It is heavier in weight and most expensive

3. Optical Fiber Cable:

a. The Optical Fiber Cable is the fastest data-transferring medium. It is made from pure silica glass and was developed in 1970. Fiberoptic cables have brought revolutionary changes to the world of the Internet. Today, all countries are

- interconnected through the Internet, where fiber optic cables play a significant role. Fiber optic cable is an advanced transmission medium used for high: speed and long-distance transmission of data.
- b. Until now, it remains the fastest cable in the world of networking for transferring data at high speeds. Another major feature of this cable is that it can transmit data at a 90- degree angle. The construction of this cable is such that it has a plastic jacket on the outside, and inside it, there are three different insulators: strength member, coating, and cladding. Inside these layers, there is high quality glass or plastic that sends the signal to this destination known as core.
- c. Uses light signals to transmit data.
- d. Very high bandwidth, long-distance transmission, immune to electromagnetic interference.
- e. Types:
 - i. Single Mode Fiber (SMF): Long distance.
 - ii. Multi Mode Fiber (MMF): Short distance.
- f. Used in backbone networks, ISPs.

2. Unguided Media (Wireless Media)

data is transmitted **without physical medium**, using electromagnetic waves. It is also known as unbounded transmission. Signals can be sent over long distance and is less secure.

Types:

1. Radio Waves

- Generating and using radio signals is very easy. Radio waves are the
 electromagnetic waves that are transmitted in all the directions of free space.
 Its frequency range is typically 3KHz to GHz. Signals of this type are used in
 radio and wireless
- Omni-directional (can travel in all directions).
- Used in FM radio, TV, mobile phones.

2. Microwaves

- This type of signal is used in mobile phone communication and TV networks. The
 frequency range of microwave signals is up to 1GHz to 300GHz. The range of its
 signals also depends on the height of the antenna used in it. In microwaves, it is
 necessary to align the sender and receiver signals properly so that the signal can
 be transmitted correctly.
- Requires line-of-sight.
- Used in satellite communication, Wi-Fi, Bluetooth.

3. Infrared Waves

• Infrared waves are used for short distances, but the signal is hindered if there is any obstruction between two devices. The frequency range of infrared waves is

up to 300GHz to 400THz.It is used in TV remotes, wireless mouse, keyboard, printer, etc.

- Short-range communication.
- Cannot pass through walls.
- Used in TV remotes, short-distance data transfer.

4. Satellite Communication

- Uses satellites in orbit for communication.
- Covers very large areas (global).
- Used in GPS, weather forecasting, international broadcasting.

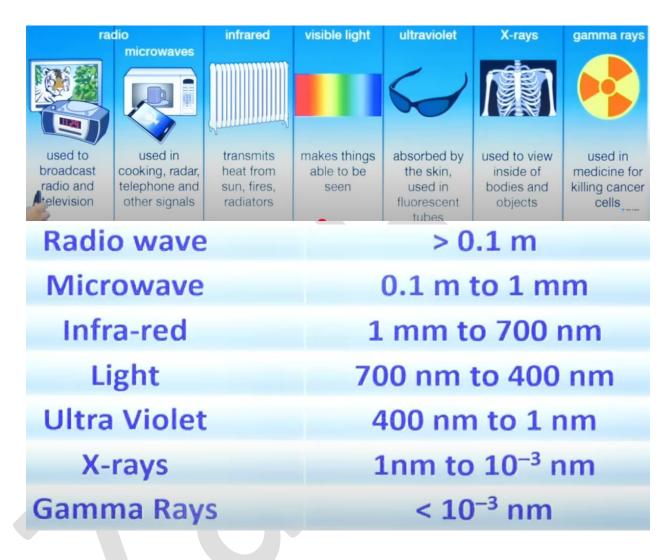
Comparison Table

Feature	Guided Media (Wired)	Unguided Media (Wireless)
Path	Physical cables	Air (no cables)
Bandwidth	High (fiber optics)	Limited
Cost	Installation costly	Cheaper (no wiring)
Mobility	Fixed	Highly mobile
Interference	Less (fiber optics)	More (radio, microwave)

Electromagnetic Spectrum (EMS)

The **electromagnetic spectrum** is the range of all electromagnetic waves arranged according to their **frequency** and **wavelength**.

- Wavelength (λ): Distance between two peaks (measured in meters).
- Frequency (f): Number of wave cycles per second (measured in Hertz, Hz).


Relationship:

$$c = \lambda \cdot f$$

where $c=3 imes 10^8\,m/s$ (speed of light).

From left to right frequency increases, wavelength decreases.

Digital Electronics: Digital electronics is the branch of electronics that deals with **digital signals** (0s and 1s) instead of continuous analog signals.

- A digital signal has two states:
 - 0 (Low / OFF)
 - 1 (High / ON)

Digital circuits use **logic gates, flip-flops, counters, multiplexers, etc.** for performing operations.

Why Digital Electronics? (Advantages over Analog)

- High **noise immunity** (less error due to interference).
- Easy to **store** and **process** information.
- More reliable and flexible.
- Data can be encrypted for security.

- Cheaper with modern IC technology.
 - **Number Systems in Digital Electronics**
- 1. **Binary (Base 2):** Uses 0, 1 \rightarrow Example: 1011₂ = 11₁₀
- 2. **Decimal (Base 10):** Normal system (0–9).
- 3. Octal (Base 8): Uses digits 0-7.
- 4. Hexadecimal (Base 16): Uses digits 0-9, A-F.

Logic Gates (Basic Building Blocks)

- 1. **AND Gate** \rightarrow Output is 1 only if all inputs are 1.
- 2. **OR Gate** \rightarrow Output is 1 if any input is 1.
- 3. **NOT Gate** \rightarrow Inverts the input $(0 \rightarrow 1, 1 \rightarrow 0)$.

Universal Gates: NAND, NOR (any circuit can be built using these).

Other Gates: XOR, XNOR.

Combinational Circuits

- Circuits whose output depends only on present inputs.
- Examples:
 - Half Adder, Full Adder (used in addition).
 - Multiplexers (MUX) select one input from many.
 - **Demultiplexers (DEMUX)** send input to one output line.
 - Encoders/Decoders.

Sequential Circuits

- Output depends on present inputs + past history (memory).
- Examples:
 - Flip-Flops (SR, JK, D, T) basic memory elements.
 - Registers group of flip-flops to store data.
 - Counters sequential counting circuits.

Applications of Digital Electronics

- Computers, Laptops, Mobile phones.
- Digital watches, Calculators.
- Communication systems (Wi-Fi, Bluetooth).
- Robotics and Control Systems.
- Embedded Systems (Cars, Smart devices).

1. Analog vs. Discrete (Digital)

Feature	Analog Electronics	Digital (Discrete) Electronics
Signal Type	Continuous (smooth variations of voltage/current)	Discrete (two states: 0 and 1)
Accuracy	High precision, but sensitive to noise	Less precise, but high noise immunity
Examples	Microphones, speakers, AM/FM radio	Computers, calculators, digital watches
Representation	Infinite values in a range	Limited values (binary states)
Processing	Difficult to store/process	Easy to store, process, and transmit

- *d* Analog = continuous signals (real world).
- **bigital/Discrete** = binary signals (0s and 1s).

Frequency and Bandwidth

1. Frequency (f)

Frequency is the number of cycles (oscillations) of a signal per second.

- Unit: Hertz (Hz)
- Formula:

$$f = \frac{1}{T}$$

where T = Time period of one cycle.

Example:

- A signal with 50 cycles per second has **50 Hz frequency**.
- Common power supply frequency in India: **50 Hz**, USA: **60 Hz**.

2. Bandwidth (BW)

Bandwidth is the **range of frequencies** that a channel, medium, or signal can transmit effectively.

Formula:

$${
m Bandwidth} = f_{high} - f_{low}$$

where f_{high} and f_{low} are the upper and lower cutoff frequencies.

Unit: Hertz (Hz)

Example:

 If a channel passes frequencies between 100 Hz and 1000 Hz, BW=1000-100=900 Hz

Relationship Between Frequency & Bandwidth

- Frequency → single value (rate of oscillation).
- Bandwidth → range of frequencies a medium or signal occupies.
- Higher bandwidth = higher data transfer rate (capacity).

Comparison Table

Feature	Frequency	Bandwidth \bigcirc
Meaning	Number of cycles per second (signal speed)	Range of frequencies a medium can carry
Unit	Hertz (Hz)	Hertz (Hz)
Representation	Single value	Difference between upper & lower frequencies
Example	Radio wave at 100 MHz	FM channel bandwidth = 200 kHz

Modulation: In communication, we often transmit information signals (voice, video, data). These signals are usually low frequency (baseband signals) and cannot travel long distances effectively because:

- They get attenuated (weakened) quickly.
- They require large antennas (λ/4 rule → antenna size increases with wavelength).
- They may suffer from noise and interference.

To solve these problems, we use modulation.

Modulation is the process of varying one or more properties of a high-frequency carrier signal in accordance with the instantaneous value of the message signal (information signal).

- Message/Baseband Signal (m(t)) original information (voice, data).
- Carrier Signal (c(t)) high-frequency sinusoidal wave.
- Modulated Signal (s(t)) combination of message + carrier.
- 3. Need for Modulation
- 1. Antenna Size Reduction

- 2. Long-Distance Transmission
- 3. Multiplexing
- 4. Noise Reduction
- 5. Better Signal Quality
- 4. Types of Modulation
- A. Analog Modulation

Used when the message signal is analog.

- 1. Amplitude Modulation (AM)
 - Carrier amplitude varies according to message signal.
 - Carrier frequency and phase remain constant.

Equation:

$$s(t) = [A_c + m(t)]\cos(2\pi f_c t)$$

- Bandwidth = 2 × message frequency (2fm).
- Applications: AM radio (535 kHz 1605 kHz).
- 2. Frequency Modulation (FM)
 - Carrier frequency varies with message signal.
 - Amplitude and phase remain constant.
 - Bandwidth (Carson's Rule):

$$BW = 2(\Delta f + f_m)$$

where Δf = frequency deviation, fm = message frequency.

- Advantages: High noise immunity, better sound quality.
- Applications: FM radio (88 108 MHz), TV sound.

3. Phase Modulation (PM)

- Carrier phase varies according to message signal.
- Similar to FM (both are angular modulation).
- Applications: Digital modulation schemes (PSK).

B. Digital Modulation

Used when the message signal is digital (bits).

1. ASK (Amplitude Shift Keying)

- Carrier amplitude changes with digital data (1 → high amplitude, 0 → low amplitude).
- Simple but noise-prone.
- Used in optical fiber communication.

2. FSK (Frequency Shift Keying)

- Carrier frequency shifts between two values depending on data bit (1 → f1, 0 → f0).
- Used in modems, Bluetooth.

3. PSK (Phase Shift Keying)

- Carrier phase changes according to data bits.
- Variants:
 - BPSK (Binary PSK)
 - QPSK (Quadrature PSK)
- Used in Wi-Fi, 4G/5G.

4. QAM (Quadrature Amplitude Modulation)

- Combination of ASK + PSK.
- Provides high data rates.
- Used in cable TV, LTE, Wi-Fi.

Pulse Modulation Techniques

Pulse modulation is a method of transmitting signals using pulses instead of continuous waves.

There are two main types:

1. Pulse Amplitude Modulation (PAM)

- Definition: In PAM, the amplitude of regularly spaced pulses is varied according to the instantaneous amplitude of the message signal.
- Type: Analog Pulse Modulation
- Representation:
 - o Pulse height (amplitude) changes with the signal.
- Applications: Used in Ethernet, Television, and as the first step in PCM.

Example: If voice amplitude = high → pulse amplitude is high.

- 2. Pulse Width Modulation (PWM)
- Definition: In PWM, the width (duration) of the pulses is varied according to the amplitude of the modulating signal.
- Type: Analog Pulse Modulation
- Representation:
 - Pulse width changes, but amplitude remains constant.
- Applications: Widely used in motor control, power regulation, and class-D audio amplifiers.

Example: Higher amplitude → wider pulse.

- 3. Pulse Position Modulation (PPM)
- Definition: In PPM, the position (time of occurrence) of each pulse is varied according to the amplitude of the modulating signal.
- Type: Analog Pulse Modulation
- Representation:

Amplitude & width remain constant, but pulse shifts in time.

Applications: Used in optical communication, remote control systems.

Example: Higher amplitude → pulse shifts to the right.

- 4. Pulse Code Modulation (PCM)
- Definition: In PCM, the analog signal is sampled, quantized, and encoded into binary digits (0s and 1s).
- Type: Digital Pulse Modulation
- Steps:
 - 1. Sampling
 - 2. Quantization
 - 3. Encoding
- Applications: Used in digital telephony, CDs, MP3, computer audio/video.

Example: Voice signal → digitized into 8-bit binary numbers.

Multiple Access:

Multiple Access refers to a technique that allows multiple users or devices to share the same communication channel (frequency, time, or code) efficiently without interference.

It is widely used in telecommunication systems, wireless networks, and satellite communication.

Types of Multiple Access

- 1. FDMA (Frequency Division Multiple Access)
- Each user is assigned a separate frequency band.
- Users transmit simultaneously but on different frequencies.
- Example: Radio broadcasting, 1G cellular systems.

Advantage: Simple, no interference if bands are well separated.

Disadvantage: Wastes bandwidth if a user is idle.

- 2. TDMA (Time Division Multiple Access)
- Users share the same frequency channel but transmit in different time slots.
- Works in time-sharing manner.
- Example: 2G GSM mobile systems.

Advantage: Efficient use of frequency.

Disadvantage: Requires precise time synchronization.

- 3. CDMA (Code Division Multiple Access)
- All users share the same frequency and same time but are separated using unique codes (spreading codes).
- Example: 3G mobile networks.

Advantage: Highly secure, resistant to interference.

Disadvantage: Complex design, needs more power control.

- 4. OFDMA (Orthogonal Frequency Division Multiple Access)
- An advanced form of FDMA using orthogonal subcarriers.
- Each user gets multiple small frequency bands (subcarriers).
- Example: 4G LTE, Wi-Fi 6, 5G networks.

Advantage: High efficiency, less interference.

Disadvantage: More complex system.

- 5. SDMA (Space Division Multiple Access)
- Uses separate spatial channels with multiple antennas (MIMO).
- Different users are served simultaneously using beamforming.

Example: 5G Massive MIMO systems.

Advantage: Supports very high capacity.

Disadvantage: Needs advanced antenna technology.

Comparison Table

Туре	Basis of Separation	Example Use	Advantage	Limitation
FDMA	Frequency bands	Radio, 1G	Simple	Wastes bandwidth if idle
TDMA	Time slots	2G GSM	Efficient	Needs sync
CDMA	Codes (spread spectrum)	3G	Secure, robust	Complex
OFDMA	Subcarriers (frequency + time)	4G LTE, Wi-Fi	High efficiency	Complex
SDMA	Space/antennas	5G Massive MIMO	Very high capacity	Expensive

Quadrature Amplitude Modulation (QAM):

QAM is a modulation technique in which both Amplitude Modulation (AM) and Phase Modulation (PM) are combined to transmit data.

- It uses two carrier signals that are 90° out of phase (called *in-phase (I)* and *quadrature (Q)* components).
- By varying both amplitude and phase, multiple symbols can be transmitted in one cycle.

Working Principle

- 1. Two carrier waves are used:
 - Cosine wave (I-channel, in-phase)
 - Sine wave (Q-channel, quadrature phase, 90° shifted)

$$s(t) = I \cdot \cos(2\pi f_c t) + Q \cdot \sin(2\pi f_c t)$$

I and Q are the amplitudes of the in-phase and quadrature signals.

- 2. By choosing different values of III and QQQ, we generate different symbols.
- 3. Each symbol can represent multiple bits → hence QAM is a high-efficiency digital modulation.

Types of QAM (based on constellation size)

- 4-QAM (QPSK) → 4 symbols (2 bits per symbol)
- 16-QAM → 16 symbols (4 bits per symbol)
- 64-QAM → 64 symbols (6 bits per symbol)

256-QAM → 256 symbols (8 bits per symbol)

The higher the QAM order \rightarrow more bits per symbol \rightarrow higher data rate, but requires better SNR (less noise).

Constellation Diagram

- A grid of points representing different amplitude + phase combinations.
- Example:
 - 16-QAM → 16 points (each point = unique 4-bit pattern).
 - 64-QAM → 64 points (each point = unique 6-bit pattern).

Advantages

- Very efficient use of bandwidth.
- Can transmit high data rates.
- Widely used in modern digital communication (Wi-Fi, 4G/5G, cable TV, DSL).

Disadvantages

- More sensitive to noise and distortion (since both amplitude & phase matter).
- Requires complex receiver design (demodulation needs error correction).

Applications of QAM

- Wi-Fi (IEEE 802.11a/g/n/ac) → 16-QAM, 64-QAM, 256-QAM.
- 4G LTE & 5G NR → 64-QAM, 256-QAM, and even 1024-QAM in advanced systems.
- Cable TV & Modems → 64-QAM and 256-QAM.
- Digital Video Broadcasting (DVB).
 - 1. Mobile Station (MS)
- The user's device: mobile phone, tablet, or data card.
- Consists of:
 - Mobile Equipment (ME): hardware (phone).
 - SIM card: subscriber identity (IMSI, authentication, services).
- Functions:
 - Communicates with the Base Station via radio signals.
 - Converts voice → digital signal → radio waves and vice versa.

2. Base Station (BS)

- Fixed radio transmitter/receiver covering a specific cell area.
- Components:
 - BTS (Base Transceiver Station): antennas + radios for communication.

 BSC (Base Station Controller): controls multiple BTS, manages handovers, allocates channels.

• Function:

- Connects MS to the Mobile Switching Center (MSC).
- Handles radio communication, frequency assignment, and power control.

3. Switching (MSC - Mobile Switching Center)

- The central controller in mobile networks.
- Functions:
 - Switches calls between mobile users or between mobile and landline users.
 - Handles roaming, authentication, and billing.
 - Coordinates with HLR (Home Location Register) and VLR (Visitor Location Register) for subscriber info.

4. Frequency Reuse

Technique used in cellular networks to maximize spectrum efficiency.

- The same frequency channels are reused in different cells, provided they are far enough apart to avoid interference.
- Cells are usually modeled as hexagons for planning.
 Example:
- If total spectrum = 100 channels and cluster size = 4 cells → each cell gets 25 channels.
- The same set of 25 channels is reused in another cluster at a safe distance.
 Benefits:
- Efficient spectrum usage.
- Higher capacity with limited bandwidth.

5. Handover (or Handoff)

Process of transferring an active call/data session from one base station to another as the user moves.

- Why needed?
 - Mobile users are moving → signal strength of current BS decreases, new BS signal becomes stronger.
- Types:
 - 1. Hard Handover:
 - "Break before Make" → old connection is broken before new one is established.
 - Used in GSM.
 - 2. Soft Handover:

- "Make before Break" → MS connects to new BS before releasing old one.
- Used in CDMA.

Functions during handover:

- Network measures signal strength.
- Decides the best candidate BS.
- Transfers communication smoothly.

Some important topics:

Region	Frequency Range	Wavelength Range	Applications
Radio Waves	3 Hz – 300 GHz	>1 mm	Broadcasting, mobile communication, radar
Microwaves	300 MHz – 300 GHz	1 mm – 1 m	Satellite, Wi-Fi, microwave ovens
Infrared	300 GHz – 400 THz	700 nm – 1 mm	Remote controls, thermal imaging
Visible Light	400 THz – 900 THz	400 – 700 nm	Vision, fiber optics
Ultraviolet	900 THz – 30 PHz	10 – 400 nm	Sterilization, fluorescence
X-rays	30 PHz – 30 EHz	0.01 – 10 nm	Medical imaging, security
Gamma Rays	>30 EHz	<0.01 nm	Cancer treatment, nuclear medicine

Feature	PSK (Phase Shift Keying)	QAM (Quadrature Amplitude Modulation)
Modulation Method	Phase only	Both amplitude and phase
Constellation Shape	Points on a circle (fixed radius)	Grid pattern (amplitude & phase vary)
Bits per Symbol	Fewer (e.g., 1 for BPSK, 2 for QPSK)	More (e.g., 4 for 16-QAM, 6 for 64- QAM)
Bandwidth Efficiency	Moderate	High
Noise Robustness	Higher (especially at low order)	Lower (especially at high order)
Complexity	Lower	Higher
Applications	Satellite, Wi-Fi, RFID	LTE, cable modem, Wi-Fi, digital TV

Feature	Amplitude Modulation (AM)	Frequency Modulation (FM)
Parameter Varied	Amplitude of carrier	Frequency of carrier
Frequency Range	535–1705 kHz (radio)	88–108 MHz (radio)
Bandwidth	Narrower	Wider
Sound Quality	Lower	Higher
Noise Susceptibility	High	Low
Coverage Area	Large (can reflect off ionosphere)	Limited (line-of-sight)
Applications	AM radio, aviation, some TV audio	FM radio, TV sound, two-way radio, hearing assistive tech
Complexity	Simple circuits	More complex circuits
Stereo Transmission	Not supported	Supported

ZATCH

Technique	Principle	Key Feature	Example Use
FDMA	Different frequencies for each user	Simple, continuous transmission	Analog cellular, satellite
TDMA	Different time slots for each user	Efficient, needs synchronization	GSM, satellite
CDMA	Unique codes for each user	High capacity, robust	3G, modern wireless
OFDMA	Subcarriers assigned to users	Very efficient, flexible	4G/5G, Wi-Fi
SDMA	Spatial separation	Uses antennas, MIMO	Advanced wireless, satellites

2. Frequency Bands in Communication

The portion of the spectrum used for communication spans from very low frequency (VLF) radio waves up to visible light for fiber optics.

Band Name	Frequency Range	Typical Uses
ELF	30–300 Hz	Power line frequencies
LF	3–300 kHz	Marine, navigation
MF	300 kHz-3 MHz	AM radio
HF	3–30 MHz	Shortwave, aircraft, ship comms
VHF	30–300 MHz	FM radio, TV
UHF	300 MHz-3 GHz	TV, mobile phones
SHF	3–30 GHz	Satellite, microwave links
EHF	30–300 GHz	Radar, advanced satellite comms
Infrared	300 GHz-400 THz	Remote controls, fiber optics
Visible	400–900 THz	Fiber optic communication

FCWMC UNIT-2

Evolution from 3G to 4G

3G Overview:

- Introduced in early 2000s for mobile internet and multimedia.
- Standards: WCDMA (Wideband Code Division Multiple Access): Used mainly in Europe and Asia under UMTS,

CDMA2000: Used primarily in North America and parts of Asia.

- Speed: Up to 2 Mbps (practical few hundred kbps).
- Architecture: Hybrid (Circuit for voice + Packet for data), Managed by RNC (Radio Network Controller) and NodeB (base station).
- Services: Voice, SMS, internet, video call.
- Limitations: Low speed, high latency (100–500 ms), complex design.

. Need for 4G:

- Demand for higher data rates and low latency.
- Rise of smartphones, video streaming, VoIP, gaming.
- Need for all-IP, efficient, and scalable networks.

4G Overview:

Introduced around 2010, based on

LTE (Long Term Evolution): Became the dominant 4G technology worldwide.

WiMAX: less widespread.

- Fully packet-switched all-IP network.
- Speed: Up to 100 Mbps (mobile), 1 Gbps (stationary).
- Technologies:

OFDMA (Orthogonal Frequency Division Multiple Access): For efficient use of spectrum and high data rates,

MIMO (Multiple Input Multiple Output): Uses multiple antennas to improve capacity and data rates..

IMS (IP Multimedia Subsystem).

- Latency: <50 ms.
- Services: HD streaming, VoLTE, online gaming, cloud apps.

Feature	3G	4G
Access Technology	WCDMA, CDMA2000	LTE (OFDMA, SC-FDMA uplink), WiMAX
Peak Data Rate	Up to 2 Mbps	Up to 100 Mbps (mobile), 1 Gbps (fixed)
Network Type	Hybrid (Circuit + Packet)	Fully IP Packet Switched
Spectral Efficiency	Moderate	High, due to OFDMA and MIMO
Latency	100-500 ms	<50 ms
Mobility Support	Up to 120 km/h	Up to 350 km/h
QoS Management	Basic QoS for voice and data	Enhanced QoS with multiple traffic classes
Security	Improved over 2G, basic encryption	Stronger encryption, mutual authentication
Service Types	Voice, video call, messaging, basic dat	aVoIP, HD video, streaming, gaming, cloud service

Historical Timeline:

Year	Event
1998-2000	Standardization of 3G under ITU's IMT-2000
2001	First commercial 3G networks launched (e.g., Japan, South Korea)
2005-2008	Evolution of 3G with HSPA and HSPA+ technologies boosting speeds up to 14 Mbps
2008	Release of LTE standards by 3GPP (Release 8)
2009-2012	First commercial 4G LTE networks launched worldwide
2010	WiMAX-based 4G deployments start but lose to LTE eventually
2013 onwards	Global adoption and rapid expansion of LTE networks
2015 and beyor	ndIntroduction of LTE-Advanced and LTE-Advanced Pro, enhancing 4G capabilities further

LTE (Long Term Evolution) is designed as an all-IP packet-switched network focused on high data rates, low latency, and efficient mobility management.

Main Components of LTE Architecture:

Component	Description
User Equipment (UE)	The mobile device (smartphone, tablet, etc.) used by the subscriber to access LTE services.
E-UTRAN (Evolved UMTS Terrestrial Radio Access Network)	The LTE radio access network responsible for radio communications with the UE. It mainly consists of eNodeBs (evolved NodeBs).
eNodeB (Evolved NodeB)	The base station that manages radio resources, handles radio transmissions, and connects UE to the core network. Performs functions like scheduling, handover, and radio resource control.
EPC (Evolved Packet Core)	The core network of LTE responsible for routing data, mobility management, authentication, and billing. It consists of several key elements:

EPC Key Elements:

Component	Function
MME (Mobility Management Entity)	Controls signaling related to mobility, authentication, session management, and security for the UE. It manages tracking and paging of UEs.
SGW (Serving Gateway)	Routes and forwards user data packets between the eNodeB and the Packet Data Network Gateway (PGW). Handles mobility when UE moves between eNodeBs.
,	Connects the LTE network to external packet data networks (like the Internet). Manages IP address allocation, policy enforcement, and charging.
HSS (Home Subscriber Server)	Central database storing subscriber profiles, authentication data, and service entitlements. Works closely with MME.
PCRF (Policy and Charging Rules Function)	Determines policies related to Quality of Service (QoS) and charging rules for each data session.

Important Interfaces:

Interface	Description
Uu	Radio interface between UE and eNodeB
S1-MME	Control plane interface between eNodeB and MME
S1-U	User plane interface between eNodeB and SGW
S5/S8	Interface between SGW and PGW (S8 for roaming)
S6a	Interface between MME and HSS

Key Features

- Flat Architecture: Fewer nodes → low latency.
- All-IP Network: Voice and data via IP (VoLTE using IMS).
- Enhanced Mobility: Smooth intra/inter-RAT handovers.
- High Speed & Low Latency: Ideal for real-time apps.
- Scalable: Operates across multiple frequency bands (1.4–20 MHz).

Evolved Packet Core (EPC): EPC is the all-IP core network of LTE that manages both control and user planes, enabling mobility, authentication, QoS, and IP connectivity between UE and external networks.

Main Functions

- Connect UE to external packet networks (Internet, IMS).
- Manage mobility and handover.
- Handle authentication and authorization.
- Control QoS and charging.
- Manage IP address allocation and session setup.

Key Components

Component	Function
MME (Mobility Management Entity)	Control plane node; handles authentication, session/bearer management, tracking, and handover control.
SGW (Serving Gateway)	User plane node; routes data, anchors mobility, and buffers packets during handovers.
PGW (Packet Data Network Gateway)	Connects EPC to Internet; assigns IPs, enforces QoS, charging, and filtering.
HSS (Home Subscriber Server)	Stores user profiles, authentication data, and subscription info.
PCRF (Policy and Charging Rules Function)	Defines QoS and charging rules based on user plan and network policy.

Interfaces

Interface	Connects	Function
S1-MME	eNodeB ↔ MME	Control plane signaling
S1-U	eNodeB ↔ SGW	User data transfer
S5/S8	SGW ↔ PGW	Data transfer (S8 for roaming)
S6a	MME ↔ HSS	Authentication and profile exchange
Gx	PGW ↔ PCRF	Policy and charging control

eNodeB (Evolved NodeB):

- eNodeB is the LTE base station in the E-UTRAN that connects User Equipment (UE) to the Evolved Packet Core (EPC).
- Combines the roles of NodeB and RNC (from 3G) into a single node, simplifying the architecture.

					•	
K \triangle	/ H	-11	n	~ †	-	nc
Key	, ,	ч		·ι	ıv	ПЭ

Role	Description	
Radio Resource Management	Allocates and schedules radio resources for uplink/downlink.	
Radio Bearer Control	Establishes, maintains, and releases radio bearers for data/signaling.	
Mobility Management	Handles handovers and UE movement between cells.	
Data Transmission	Transmits user data using OFDMA (DL) & SC-FDMA (UL).	
EPC Connection	Communicates with EPC through S1-MME (control) and S1-U (user plane).	
QoS Enforcement	Ensures proper data priority and service quality.	
Security	Performs encryption and integrity protection.	
Measurement Reporting	Reports network and UE performance metrics.	
Interfaces		
Interface	Purpose	
Uu	Radio link between UE and eNodeB	
S1-MME	Control plane signaling with MME	
S1-U	User data path with SGW	
X2	Communication with neighboring eNodeBs for handovers	

Importance

- Integrates RNC functions, reducing latency.
- Enables real-time scheduling and resource optimization.
- Supports MIMO, carrier aggregation, and seamless handovers via X2.
- Provides direct EPC connectivity for faster data flow.

IP Address Allocation in LTE (Summary)

Purpose:

- Every UE (User Equipment) needs an IP address for communication in LTE's all-IP network.
- Enables routing, data exchange, and session management.

Allocator:

- PGW (Packet Data Network Gateway) assigns the IP address to UE.
- Acts as a bridge between LTE and external IP networks.

When Allocated:

- During Attach Procedure or PDN Connectivity Procedure.
- Happens while creating the default bearer (initial data path).

Process:

- 1. UE sends Attach Request → MME.
- 2. MME contacts HSS for authentication and subscription info.
- 3. MME initiates default bearer setup.
- 4. PGW allocates IP (from pool or via DHCP).
- 5. Bearer established → IP confirmed to UE → data transfer starts.

Types of IP:

- Dynamic IP: Assigned per session (most common).
- Static IP: For special users.
- IPv4 / IPv6 / Dual Stack: Supported as per configuration.

Handovers in Mobile Networks: transferring an active call or data session from one cell to another without interruption.

- 1. Intra-RAT Handover: Handover occurs within the same Radio Access Technology (RAT), e.g., LTE to LTE, or UMTS to UMTS.
- In LTE, when a UE moves from one eNodeB to another eNodeB, that is an Intra-LTE handover.

Types of Intra-RAT Handover:

- Intra-eNodeB: UE moves between cells controlled by the same eNodeB
- Inter-eNodeB: UE moves between different eNodeBs (most common in LTE).

Key Points:

- Managed by eNodeBs and MME.
- Uses X2 interface for signaling/data forwarding.
- Low latency and seamless transition.

• 2. Inter-RAT Handover: Handover occurs between different Radio Access Technologies (RATs), e.g., LTE to 3G (UMTS), LTE to 2G (GSM), or vice versa.

Key Points:

- More complex due to different technologies.
- Controlled mainly by MME.
- May use CS fallback for voice or data continuity.
- Intra-RAT = same technology (fast, seamless)
- Inter-RAT = different technologies (more complex, controlled by MME)

Key Differences:

Feature	Intra-RAT Handover	Inter-RAT Handover
RAT Type	Same RAT (e.g., LTE → LTE)	Different RAT (e.g., LTE → UMTS)
Complexity	Lower complexity, simpler signal	lingHigher complexity, more signaling
Latency	Lower latency	Higher latency due to protocol changes
Network Eleme	entseNodeB and MME primarily	Involves MME, RNC (for UMTS), BSC (for GSM)
Use Case	User moves within LTE coverage	User moves between LTE and legacy networks

Why Are Both Handovers Needed?

- Intra-RAT handovers provide seamless connectivity within the same network type and ensure high throughput and low latency.
- Inter-RAT handovers ensure continuous service when the UE moves out of LTE coverage or during network congestion, by switching to legacy networks.

LTE Attach Procedure: The Attach Procedure is the process by which a User Equipment (UE) registers with the LTE network to receive services like voice, data, and mobility management

Purpose of Attach Procedure in LTE

- Registers the UE with the network.
- Authenticates the user and device.
- Establishes a default bearer for initial data connection.
- Allocates an IP address to the UE.
- Enables mobility and session management for continuous service.

Entity	Role
UE (User Equipment)	Mobile device initiating attach
eNodeB	LTE base station, radio access node
MME (Mobility Management Ent	ity)Core network node controlling mobility, authentication, and session management
HSS (Home Subscriber Server)	Database storing subscriber info
SGW (Serving Gateway)	Routes and forwards user data packets
PGW (Packet Gateway)	Provides connectivity to external IP networks, allocates IP address

Authentication and Security in LTE:

Purpose:

- Verify identity of UE and subscriber.
- Protect data and signaling from interception or tampering.
- Ensure privacy and confidentiality.
- Prevent unauthorized access and fraud.

Session Creation and Bearer Setup in LTE

Session:

- A data connection between UE and Packet Data Network (PDN).
- Carries user data via one or more bearers with defined QoS.

Bearer:

- A virtual data pipe with specific QoS (bandwidth, latency, priority).
- Types of Bearers:
 - 1. Default Bearer:
 - Created automatically during Attach Procedure.
 - Provides always-on IP connectivity.
 - 2. Dedicated Bearer(s):

 Created for services needing special QoS (e.g., VoIP, video streaming).

Session Creation Flow:

- 1. Default Bearer Setup: Provides basic IP connectivity and best-effort data.
- 2. Dedicated Bearer Setup: Added as required for specific services with defined QoS.

PDCP (Packet Data Convergence Protocol) Layer

Position:

- Part of the LTE Radio Protocol Stack.
- Above RLC, below IP/NAS layers.
- Operates in User Plane (data) and Control Plane (signaling).

Primary Functions	
Function	Description
Header Compression	Reduces IP header size (e.g., ROHC) to save radio bandwidth.
Security	Provides ciphering and integrity protection for data and signaling.
In-sequence Delivery	Ensures packets are delivered in order to upper layers.
Duplicate Detection	Detects and discards duplicate packets.
Data Transfer	Transfers user plane data and NAS signaling messages.
Status Reporting	Reports control plane status messages.

Key Procedures

- Header Compression → saves bandwidth.
- Ciphering & Integrity Protection → secures data.
- Sequence Numbering → in-order delivery.
- Reordering & Duplicate Detection → reliability.

Importance

- Efficiency: Less bandwidth usage.
- Security: Protects data and signaling.

- Reliability: Ensures correct order and no duplicates.
- Mobility Support: Works with handovers for seamless connectivity.

RLC (Radio Link Control) Layer

- Part of Layer 2 (Data Link Layer) in LTE.
- Between PDCP (above) and MAC (below).
- Present in UE and eNodeB.

Primary Functions		
Function	Description	
Segmentation & Reassembly	Splits large PDCP SDUs into RLC PDUs and reassembles them at the receiver.	
Error Correction (ARQ)	Detects lost/corrupt PDUs and requests retransmission.	
Concatenation	Combines small SDUs into one PDU for efficient transmission.	
In-sequence Delivery	Reorders PDUs to deliver data in order to PDCP.	
Duplicate Detection	Discards duplicate PDUs.	
Buffering & Flow Control	Manages data buffers to prevent overflow.	

Mode	Description	Use Case
TM (Transparent Mode)	No headers, no retransmission	Broadcast/multicast
UM (Unacknowledged Mode)	Segmentation & in-sequence delivery, no retransmission	Delay-sensitive services (voice/video)
AM (Acknowledged Mode)	Full ARQ with retransmission	Reliable services (downloads, web browsing)

How RLC Works

RLC Modes

- 1. Segmentation: Splits PDCP data into PDUs.
- 2. Transmission: PDUs sent to MAC layer.
- 3. Reception: PDUs reordered and reassembled into SDUs.
- 4. Error Handling: Retransmission in AM mode using ACK/NACK.
- 5. Delivery: SDUs passed to PDCP in correct order.

Importance

- Ensures data integrity and reliability over wireless channels.
- Supports different service types with appropriate reliability/latency.
- Works with MAC and PDCP for efficient and reliable delivery.

MAC (Medium Access Control) Layer

Position:

- Sublayer of Data Link Layer (Layer 2).
- Below RLC, above PHY.
- Present in UE and eNodeB.

Primary Functions

Function	Description
Scheduling & Multiplexing	Allocates resources dynamically and combines data from multiple logical channels into transport blocks.
Error Correction (HARQ)	Fast retransmissions using Hybrid ARQ and forward error correction.
Priority Handling	Allocates resources based on logical channel priorities.
Buffer Status Reporting (BSR)	UE reports buffer info to help eNodeB scheduling.
Random Access Procedure	Manages initial UE access via RACH.
Transport Format Selection	Chooses block size and coding rate based on channel conditions.
Logical → Transport Channel Mapping	Maps logical channels to transport channels for PHY layer transmission.

Key Operations

- HARQ: Combines error detection (CRC) with retransmissions for fast recovery.
- Scheduling: eNodeB MAC allocates resources per TTI (1 ms) based on QoS, channel quality, and buffer status.
- Multiplexing: Efficiently serves multiple UEs on shared radio medium.

Importance

- Ensures efficient and fair radio resource usage.
- Provides fast error recovery, improving throughput and reliability.

• Bridges higher-layer data and physical transmission.

PHY (Physical) Layer in LTE

Position:

- Lowest layer in LTE protocol stack.
- Below MAC.
- Handles actual radio transmission and reception.

Primary Functions

Function	Description	
Channel Coding/Decoding	Adds error correction (e.g., Turbo codes) and decodes received data.	
Modulation/Demodulation	Converts digital data to radio signals (QPSK, 16-QAM, 64-QAM) and vice versa.	
MIMO Processing	Uses multiple antennas to increase data rates and reliability.	
OFDM / SC-FDMA	OFDM for downlink, SC-FDMA for uplink (low PAPR, better UE battery).	
Synchronization	Aligns UE and eNodeB in time and frequency.	
Channel Estimation / Equalization	Measures and compensates for channel distortions.	
Resource Mapping	Maps bits onto Physical Resource Blocks (PRBs) in time-frequency grid.	
HARQ Combining	Combines retransmissions for better decoding.	
Reference Signal Generation	Sends pilot signals for channel estimation and measurements.	

Physical Channels

Channel	Purpose	
PDSCH	Downlink data and signaling.	
PUSCH	Uplink user data.	
PDCCH	Downlink control info (scheduling grants).	
PUCCH	Uplink control info (HARQ ACK/NACK).	
PRACH	UE random access requests.	

Importance

- Converts bits

 → radio waves.
- Combats channel impairments (fading, interference).
- Maximizes spectral efficiency and capacity.
- Balances UE power consumption and performance.

Control Plane (C-Plane)

- Manages network signaling, mobility, session, and connection control.
- Data Type: Signaling messages.
- Examples:
 - Handover, paging, bearer setup/modification/release
 - Authentication & security signaling
 - RRC and NAS messages
- Protocols: RRC (access network), NAS (core network), PDCP/RLC/MAC (control messages)
- Security: Integrity protection + encryption
- Traffic Volume: Low

• Handled By: MME in EPC

User Plane (U-Plane)

- Transports actual user data (voice, video, internet).
- Data Type: IP packets, multimedia content.
- Protocols: IP (higher layers), PDCP/RLC/MAC, PHY for radio transmission
- Security: Encryption (ciphering)
- Traffic Volume: High
- Handled By: SGW/PGW in EPC

Key Differences

Aspect	Control Plane	User Plane
Data Type	Signaling	User data (IP packets)
Security	Integrity + Encryption	Encryption only
Traffic Volume	Low	High
Protocols	RRC, NAS, Control PDCP/RLC/MAC	User PDCP/RLC/MAC, IP
Core Handling	MME	SGW/PGW

- Control Plane: UE sends Attach Request → MME handles authentication & security.
- User Plane: After attach, user IP data flows via established bearers.